Här är alla referenser till boken Det sötaste vi har.

2. Sockerförsöket – en historisk parallell

Adler, C.J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45, 450–455, 455e451, doi:10.1038/ng.2536 (2013).

Bartnik, M. et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. European Heart Journal 25, 1880–1890, doi:10.1016/j.ehj.2004.07.027 (2004).

Bommenel, E. Sockerförsöket: kariesexperimenten 1943–1960 på Vipeholms sjukhus för sinnesslöa, Linköpings universitet (2006).

Enghardt Barbieri, H., Pearson, Monika & Becker, Wulf. Riksmaten – barn 2003: livsmedels- och näringsintag bland barn i Sverige. (Livsmedelsverket, 2003).

Gibbons, A. Evolutionary biology. An evolutionary theory of dentistry. Science 336, 973–975, doi:10.1126/science.336.6084.973 (2012).

Gustafsson, B.E. et al. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontologica Scandinavica 11, 232–264 (1954).

Lager, A. Övervikt bland barn – system för nationell uppföljning: fem kommuner under fem läsår. (Statens Folkhälsoinstitut, 2009).

Larsen, C.S. Biological changes in human populations with agriculture. Annual Review of Anthropology 24, 185–213 (1995).

Larsen, T.M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. The New England Journal of Medicine 363, 2102–2113, doi:10.1056/NEJMoa1007137 (2010).

Nagao, M., Iso, H., Yamagishi, K., Date, C. & Tamakoshi, A. Meat consumption in relation to mortality from cardiovascular disease among Japanese men and women. European Journal of Clinical Nutrition 66, 687–693, doi:10.1038/ejcn.2012.6 (2012).

Pan, A. et al. Red meat consumption and mortality: results from 2 prospective cohort studies. Archives of Internal Medicine 172, 555–563, doi:10.1001/archinternmed.2011.2287 (2012).

Petrov, K. Från blodbesudlat kolonialsocker till livsviktigt blodsocker: Svensk-europeiska teman i sockrets globala kulturhistoria. Kulturhistorisk tidskrift, 129–154 (2012).

Statens offentliga utredningar, 1930:35.

Tandkaries och kolhydrater. Vipeholms-undersökningarna 1947–1951. Vol. 45 (CWK Gleerups Förlag Lund, 1952).

Vipeholmsexperimenten, P3 Dokumentär (red I. Lundqvist)
(Sveriges Radio, http://sverigesradio.se/sida/avsnitt/65245?
programid=2519//, 2010).

3. Socker – grus i en växande kropp

Abid, A. et al. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. Journal of Hepatology 51, 918–924, doi:10.1016/j.jhep.2009.05.033 (2009).

Aeberli, I. et al. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. The American Journal of Clinical Nutrition 86, 1174–1178 (2007).

Basaranoglu, M., Basaranoglu, G., Sabuncu, T. & Senturk, H. Fructose as a key player in the development of fatty liver disease. World Journal of Gastroenterology: WJG 19, 1166–1172, doi:10.3748/wjg.v19.i8.1166 (2013).

Basu, S., Yoffe, P., Hills, N. & Lustig, R.H. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLOS ONE 8, e57873, doi:10.1371/journal.pone.0057873 (2013).

Berneis, K.K. & Krauss, R.M. Metabolic origins and clinical significance of LDL heterogeneity. Journal of Lipid Research 43, 1363–1379 (2002).

Bray, G.A. How bad is fructose? The American Journal of Clinical Nutrition 86, 895–896 (2007).

Bremer, A.A., Mietus-Snyder, M. & Lustig, R.H. Toward a unifying hypothesis of metabolic syndrome. Pediatrics 129, 557–570, doi:10.1542/peds.2011–2912 (2012).

Cohen, J.C., Horton, J.D. & Hobbs, H.H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523, doi:10.1126/science.1204265 (2011).

David Wang, D. et al. Effect of fructose on postprandial trigly­cerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 232, 125–133, doi:10.1016/j.atherosclerosis.2013.10.019 (2014).

Dhar, I., Dhar, A., Wu, L. & Desai, K.M. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats. PLOS ONE 8, e74212, doi:10.1371/journal.pone.0074212 (2013).

Enghardt Barbieri, H., Pearson, Monika & Becker, Wulf. Riksmaten – barn 2003: livsmedels- och näringsintag bland barn i Sverige (Livsmedelsverket, 2003).

Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proceedings of the National Academy of Sciences of the United States of America 106, 15430–15435, doi:10.1073/pnas.0904944106 (2009).

Feig, D.I. et al. Serum uric acid: a risk factor and a target for treatment? Journal of the American Society of Nephrology: JASN 17, S69–73, doi:10.1681/ASN.2005121331 (2006).

Hellerstein, M.K., Schwarz, J.M. & Neese, R.A. Regulation of hepatic de novo lipogenesis in humans. Annual Review of Nutrition 16, 523–557, doi:10.1146/annurev.nu.16.070196.002515 (1996).

Hernandez, C. & Lin, J.D. A sweet path to insulin resis­tance through PGC-1beta. Cell Metabolism 9, 215–216, doi:10.1016/j.cmet.2009.02.001 (2009).

Jensen, J., Rustad, P.I., Kolnes, A.J. & Lai, Y.C. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Frontiers in Physiology 2, 112, doi:10.3389/fphys.2011.00112 (2011).

Krishnan, E. Interaction of Inflammation, Hyperuricemia, and the Prevalence of Hypertension Among Adults Free of Metabolic Syndrome: NHANES 2009-2010. Journal of the American Heart Association 3, e000157, doi:10.1161/JAHA.113.000157 (2014).

Lager, A. Övervikt bland barn – system för nationell uppföljning: fem kommuner under fem läsår. (Statens Folkhälsoinstitut, 2009).

Le, K.A. et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. The American Journal of Clinical Nutrition 84, 1374–1379 (2006).

Ludwig, D.S. Examining the health effects of fructose. JAMA: The Journal of the American Medical Association 310, 33–34, doi:10.1001/jama.2013.6562 (2013).

Lustig, R.H., Schmidt, L.A. & Brindis, C.D. Public health: The toxic truth about sugar. Nature 482, 27–29, doi:10.1038/482027a (2012).

Maersk, M. et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. The American Journal of Clinical Nutrition 95, 283–289, doi:10.3945/ajcn.111.022533 (2012).

Nagai, Y. et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metabolism 9, 252–264, doi:10.1016/j.cmet.2009.01.011 (2009).

Nguyen, S., Choi, H.K., Lustig, R.H. & Hsu, C.Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. The Journal of Pediatrics 154, 807–813, doi:10.1016/j.jpeds.2009.01.015 (2009).

Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. Journal of Hepatology 48, 993–999, doi:10.1016/j.jhep.2008.02.011 (2008).

Parks, E.J., Skokan, L.E., Timlin, M.T. & Dingfelder, C.S. Dietary sugars stimulate fatty acid synthesis in adults. The Journal of Nutrition 138, 1039–1046 (2008).

Pollock, N.K. et al. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adole­scents. The Journal of Nutrition 142, 251–257, doi:10.3945/jn.111.150219 (2012).

Schalkwijk, C.G., Stehouwer, C.D. & van Hinsbergh, V.W. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes/Metabolism Research and Reviews 20, 369–382, doi:10.1002/dmrr.488 (2004).

Seshasai, S.R. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. The New England Journal of Medicine 364, 829–841, doi:10.1056/NEJMoa1008862 (2011).

Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. The New England Journal of Medicine 359, 229–241, doi:10.1056/NEJMoa0708681 (2008).

Stanhope, K.L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of Clinical Investigation 119, 1322–1334, doi:10.1172/JCI37385 (2009).

Stanhope, K.L., Schwarz, J.M. & Havel, P.J. Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Current Opinion in Lipidology 24, 198–206, doi:10.1097/MOL.0b013e3283613bca (2013).

Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. The New England Journal of Medicine 365, 1597–1604, doi:10.1056/NEJMoa1105816 (2011).

Swarbrick, M.M. et al. Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylgly­cerol and apolipoprotein-B concentrations in overweight and obese women. The British Journal of Nutrition 100, 947–952, doi:10.1017/S0007114508968252 (2008).

Tappy, L. & Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews 90, 23–46, doi:10.1152/physrev.00019.2009 (2010).

Wang, D.D. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. The Journal of Nutrition 142, 916–923, doi:10.3945/jn.111.151951 (2012).

Wei, Y., Wang, D., Moran, G., Estrada, A. & Pagliassotti, M.J. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutrition & Metabolism 10, 32, doi:10.1186/1743-7075-10-32 (2013).

Welsh, J.A., Karpen, S. & Vos, M.B. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988-1994 to 2007-2010. The Journal of Pediatrics 162, 496–500 e491, doi:10.1016/j.jpeds.2012.08.043 (2013).

Yang, Q. et al. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Internal Medicine, doi:10.1001/jamainternmed.2013.13563 (2014).

4. Sötsug och hunger – starka krafter i kroppen

Avena, N.M., Rada, P. & Hoebel, B.G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience & Biobehavioral Reviews 32, 20–39, doi:10.1016/j.neubiorev.2007.04.019 (2008).

Bruning, J.C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

Burger, K.S. & Stice, E. Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. The American Journal of Clinical Nutrition 95, 810–817, doi:10.3945/ajcn.111.027003 (2012).

De Graaf, C. & Zandstra, E.H. Sweetness intensity and plea­santness in children, adolescents, and adults. Physiology & Behavior 67, 513–520 (1999).

Desor, J.A. & Beauchamp, G.K. Longitudinal changes in sweet preferences in humans. Physiology & Behavior 39, 639–641 (1987).

Desor, J.A., Greene, L.S. & Maller, O. Preferences for sweet and salty in 9- to 15-year-old and adult humans. Science 190, 686–687 (1975).

Desor, J.A., Maller, O. & Andrews, K. Ingestive responses of human newborns to salty, sour, and bitter stimuli. Journal of Comparative and Physiological Psychology 89, 966–970 (1975).

Elliott, S.S., Keim, N.L., Stern, J.S., Teff, K. & Havel, P.J. Fructose, weight gain, and the insulin resistance syndrome. The American Journal of Clinical Nutrition 76, 911–922 (2002).

Haber, G.B., Heaton, K.W., Murphy, D. & Burroughs, L.F. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. The Lancet 2, 679–682 (1977).

Harrison, D., Beggs, S. & Stevens, B. Sucrose for procedural pain management in infants. Pediatrics 130, 918–925, doi:10.1542/peds.2011-3848 (2012).

Holt, S., Brand, J., Soveny, C. & Hansky, J. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 18, 129–141 (1992).

Lee, M.J. & Fried, S.K. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. American Journal of Physiology. Endocrinology and Metabolism 296, E1230–1238, doi:10.1152/ajpendo.90927.2008 (2009).

Lennerz, B.S. et al. Effects of dietary glycemic index on brain regions related to reward and craving in men. The American Journal of Clinical Nutrition 98, 641–647, doi:10.3945/ajcn.113.064113 (2013).

Liem, D.G. & de Graaf, C. Sweet and sour preferences in young children and adults: role of repeated exposure. Physiology & Behavior 83, 421–429, doi:10.1016/j.physbeh.2004.08.028 (2004).

Ludwig, D.S. et al. High glycemic index foods, overeating, and obesity. Pediatrics 103, E26 (1999).

Maersk, M. et al. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial. European Journal of Clinical Nutrition 66, 523–529, doi:10.1038/ejcn.2011.223 (2012).

Page, K.A. et al. Effects of fructose vs glucose on regional ce­rebral blood flow in brain regions involved with appetite and reward pathways. JAMA: the Journal of the American Medical Association 309, 63–70, doi:10.1001/jama.2012.116975 (2013).

Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. The New England Journal of Medicine 367, 1387–1396, doi:10.1056/NEJMoa1203039 (2012).

SBU. Vol. http://www.sbu.se/2012_08 (red. Statens beredning för medicinsk utvärdering) (2012).

Schwartz, C., Issanchou, S. & Nicklaus, S. Developmental changes in the acceptance of the five basic tastes in the first year of life. The British Journal of Nutrition 102, 1375–1385, doi:10.1017/S0007114509990286 (2009).

Sclafani, A., Touzani, K. & Bodnar, R.J. Dopamine and learned food preferences. Physiology & Behavior 104, 64–68, doi:10.1016/j.physbeh.2011.04.039 (2011).

Vartanian, L.R., Schwartz, M.B. & Brownell, K.D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. American Journal of Public Health 97, 667–675, doi:10.2105/AJPH.2005.083782 (2007).

Yamamoto, T. Brain mechanisms of sweetness and palatability of sugars. Nutrition Reviews 61, S5–9 (2003).

5. En hjärna som tror att den svälter

Amitani, M., Asakawa, A., Amitani, H. & Inui, A. The role of leptin in the control of insulin-glucose axis. Frontiers in Neuroscience 7, 51, doi:10.3389/fnins.2013.00051 (2013).

Coleman, D.L. A historical perspective on leptin. Nature Medicine 16, 1097–1099, doi:10.1038/nm1010-1097 (2010).

Coleman, D.L. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9, 294–298 (1973).

Ebbeling, C.B. et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA: the Journal of the American Medical Association 307, 2627–2634, doi:10.1001/jama.2012.6607 (2012).

Farooqi, I.S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. The New England Journal of Medicine 341, 879–884, doi:10.1056/NEJM199909163411204 (1999).

Flier, J.S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

Frederich, R.C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Medicine 1, 1311–1314 (1995).

Friedman, J. Leading the charge in leptin research: an interview with Jeffrey Friedman. Disease Models & Mechanisms 5, 576–579, doi:10.1242/dmm.010629 (2012).

Friedman, J.M. A conversation with Jeffrey M. Friedman by Ushma S. Neill. The Journal of Clinical Investigation 123, 529–530, doi:10.1172/JCI68394 (2013).

Heymsfield, S.B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA: the Journal of the American Medical Association 282, 1568–1575 (1999).

Howard, J.K. et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nature Medicine 10, 734–738, doi:10.1038/nm1072 (2004).

Hummel, K.P., Dickie, M.M. & Coleman, D.L. Diabetes, a new mutation in the mouse. Science 153, 1127–1128 (1966).

Lustig, R.H. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. Nature Clinical Practice. Endocrinology & Metabolism 2, 447–458, doi:10.1038/ncpendmet0220 (2006).

Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine 1, 1155–1161 (1995).

Montague, C.T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908, doi:10.1038/43185 (1997).

Nazarians-Armavil, A., Menchella, J.A. & Belsham, D.D. Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription. Molecular Endocrino­logy 27, 990–1003, doi:10.1210/me.2012-1338 (2013).

Neill, U.S. Leaping for leptin: the 2010 Albert Lasker Basic Medical Research Award goes to Douglas Coleman and Jeffrey M. Friedman. The Journal of Clinical Investigation 120, 3413–3418 (2010).

Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. The New England Journal of Medicine 359, 229–241, doi:10.1056/NEJMoa0708681 (2008).

Tartaglia, L.A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

7. Gödda kroppar växer mer

Aksglaede, L., Sorensen, K., Petersen, J.H., Skakkebaek, N.E. & Juul, A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 123, e932–939, doi:10.1542/peds.2008-2491 (2009).

Androulakis, II et al. Visceral adiposity index (VAI) is related to the severity of anovulation and other clinical features in women with polycystic ovary syndrome. Clinical Endocrino­logy, doi:10.1111/cen.12447 (2014).

Asvold, B.O., Eskild, A., Jenum, P.A. & Vatten, L.J. Maternal concentrations of insulin-like growth factor I and insulin-like growth factor binding protein 1 during pregnancy and birth weight of offspring. American Journal of Epidemiology 174, 129–135, doi:10.1093/aje/kwr067 (2011).

Barbour, L.A. et al. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 30 Suppl 2, S112–119, doi:10.2337/dc07-s202 (2007).

Ben-Amitai, D. & Laron, Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. Journal of the European Academy of Dermatology and Venereology: JEADV 25, 950–954, doi:10.1111/j.1468-3083.2010.03896.x (2011).

Biro, F.M. et al. Onset of breast development in a longitudinal cohort. Pediatrics 132, 1019–1027, doi:10.1542/peds.2012-3773 (2013).

Bodicoat, D.H. et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Research: BCR 16, R18, doi:10.1186/bcr3613 (2014).

Burris, J., Rietkerk, W. & Woolf, K. Acne: the role of medical nutrition therapy. Journal of the Academy of Nutrition and Dietetics 113, 416–430, doi:10.1016/j.jand.2012.11.016 (2013).

Campbell, G.G., Burgess, F.J. Intolerance to Sugar as a Factor in the Production of Some Dermatoses. The British Journal of Dermatology and Syphilis (1927).

Carroll, J., Saxena, R. & Welt, C.K. Environmental and genetic factors influence age at menarche in women with polycystic ovary syndrome. Journal of Pediatric Endocrinology & Metabolism: JPEM 25, 459–466 (2012).

Chung, S. et al. Association between chronological change of reproductive factors and breast cancer risk defined by hormone receptor status: results from the Seoul Breast Cancer Study. Breast Cancer Research and Treatment 140, 557–565, doi:10.1007/s10549-013-2645-4 (2013).

Cnattingius, S. et al. Maternal obesity and risk of preterm deli­very. JAMA: the Journal of the American Medical Association 309, 2362–2370, doi:10.1001/jama.2013.6295 (2013).

Cnattingius, S., Lundberg, F., Sandin, S., Gronberg, H. & Iliadou, A. Birth characteristics and risk of prostate cancer: the contribution of genetic factors. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 18, 2422–2426, doi:10.1158/1055-9965.EPI-09-0366 (2009).

Cordain, L. et al. Acne vulgaris: a disease of Western civilization. Archives of Dermatology 138, 1584–1590 (2002).

Deltsidou, A. Age at menarche and menstrual irregularities of adolescents with type 1 diabetes. Journal of Pediatric and Adolescent Gynecology 23, 162–167, doi:10.1016/j.jpag.2009.06.006 (2010).

Edén, B. Övervikt och fetma minskar kvinnors fertilitet. Vikt­nedgång och fysisk aktivitet ökar den barnlösas chanser att bli gravid. Läkartidningen 100, 4096–4099 (2003).

Eichenfield, L.F. et al. Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics 131 Suppl 3, S163–186, doi:10.1542/peds.2013-0490B (2013).

Elks, C.E. et al. Adult obesity susceptibility variants are associated with greater childhood weight gain and a faster tempo of growth: the 1946 British Birth Cohort Study. The American Journal of Clinical Nutrition 95, 1150–1156, doi:10.3945/ajcn.111.027870 (2012).

Eriksson, M. et al. The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age. The Prostate 67, 1247–1254, doi:10.1002/pros.20428 (2007).

Gallagher, E.J. & LeRoith, D. Minireview: IGF, Insulin, and Cancer. Endocrinology 152, 2546–2551, doi:10.1210/en.2011-0231 (2011).

Guevara-Aguirre, J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Science Translational Medicine 3, 70ra13, doi:10.1126/scitranslmed.3001845 (2011).

Halvorsen, J.A. et al. Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study. Journal of Investigative Dermato­logy 131, 363–370, doi:10.1038/jid.2010.264 (2011).

Hills, F.A., English, J. & Chard, T. Circulating levels of IGF-I and IGF-binding protein-1 throughout pregnancy: relation to birthweight and maternal weight. The Journal of Endocrino­logy 148, 303–309 (1996).

Hirschberg, A.L. Sex hormones, appetite and eating behaviour in women. Maturitas 71, 248–256, doi:10.1016/j.maturitas.2011.12.016 (2012).

Huston, M.S., Holly, J.M., Feldman, E.L. IGF and Nutrition in Health and Disease. (Humana Press, 2010).

Jansson, N. et al. Maternal hormones linking maternal body mass index and dietary intake to birth weight. The American Journal of Clinical Nutrition 87, 1743–1749 (2008).

Johnson, W. et al. A changing pattern of childhood BMI growth during the 20th century: 70 y of data from the Fels Longitudinal Study. The American Journal of Clinical Nutrition 95, 1136–1143, doi:10.3945/ajcn.111.022269 (2012).

Johnson, W. et al. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. International Journal of Obesity (London) 36, 535–541, doi:10.1038/ijo.2011.238 (2012).

Kim, J.T. et al. Catch-up growth after long-term implementation and weaning from ketogenic diet in pediatric epileptic patients. Clinical Nutrition 32, 98–103, doi:10.1016/j.clnu.2012.05.019 (2013).

Koyama, S. et al. Adiposity rebound and the development of metabolic syndrome. Pediatrics 133, e114–119, doi:10.1542/peds.2013-0966 (2014).

Lindsay, R.S. et al. Inverse changes in fetal insulin-like growth factor (IGF)-1 and IGF binding protein-1 in association with higher birth weight in maternal diabetes. Clinical Endocrinology 66, 322–328, doi:10.1111/j.1365-2265.2006.02719.x (2007).

Lombardo, F. et al. Menarcheal timing in intensively treated girls with type 1 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases: NMCD 19, 35–38, doi:10.1016/j.numecd.2007.12.002 (2009).

Ludwig, D.S. & Currie, J. The association between pregnancy weight gain and birthweight: a within-family comparison. The Lancet 376, 984–990, doi:10.1016/S0140-6736(10)60751-9 (2010).

Marsh, K.A., Steinbeck, K.S., Atkinson, F.S., Petocz, P. & Brand-Miller, J.C. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. The American Journal of Clinical Nutrition 92, 83–92, doi:10.3945/ajcn.2010.29261 (2010).

Mavropoulos, J.C., Yancy, W.S., Hepburn, J. & Westman, E.C. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutrition & Metabolism 2, 35, doi:10.1186/1743-7075-2-35 (2005).

Messina, M.F. et al. Long-term auxological and pubertal outcome of patients with hereditary insulin-like growth factor-I deficiency (Laron and growth hormone-gene deletion syndrome) treated with recombinant human insulin-like growth factor-I. Journal of Endocrinological Investigation 34, 292–295, doi:10.3275/7109 (2011).

Meuwisse, G., Otterblad Olausson, P. Ökad födelsevikt i Norden. Allt större andel nyfödda väger över fyra kilo. Läkartidningen 95 (1998).

Moghetti, P. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism 98, E628–637, doi:10.1210/jc.2012-3908 (2013).

Neal, E.G. et al. Growth of children on classical and medium-chain triglyceride ketogenic diets. Pediatrics 122, e334–340, doi:10.1542/peds.2007-2410 (2008).

Nybacka, A. et al. Randomized comparison of the influence of dietary management and/or physical exercise on ovarian function and metabolic parameters in overweight women with polycystic ovary syndrome. Fertility and Sterility 96, 1508–1513, doi:10.1016/j.fertnstert.2011.09.006 (2011).

Ohlsson, C., Lorentzon, M., Norjavaara, E. & Kindblom, J.M. Age at adiposity rebound is associated with fat mass in young adult males-the GOOD study. PloS one 7, e49404, doi:10.1371/journal.pone.0049404 (2012).

Peterson, S.J. et al. Changes in growth and seizure reduction in children on the ketogenic diet as a treatment for intractable epilepsy. Journal of the American Dietetic Association 105, 718–725, doi:10.1016/j.jada.2005.02.009 (2005).

Poretsky, L., Cataldo, N.A., Rosenwaks, Z. & Giudice, L.C. The insulin-related ovarian regulatory system in health and disease. Endocrine Reviews 20, 535–582, doi:10.1210/edrv.20.4.0374 (1999).

Roberts, D.L., Dive, C. & Renehan, A.G. Biological mechanisms linking obesity and cancer risk: new perspectives. The Annual Review of Medicine 61, 301–316, doi:10.1146/annurev.med.080708.082713 (2010).

Rohrer, T. et al. Delayed menarche in young German women with type 1 diabetes mellitus: recent results from the DPV diabetes documentation and quality management system. European Journal of Pediatrics 167, 793–799, doi:10.1007/s00431-007-0590-0 (2008).

Rolland-Cachera, M.F., Deheeger, M., Maillot, M. & Bellisle, F. Early adiposity rebound: causes and consequences for obesity in children and adults. International Journal of Obesity (London) 30 Suppl 4, S11–17, doi:10.1038/sj.ijo.0803514 (2006).

Schweiger, B.M., Snell-Bergeon, J.K., Roman, R., McFann, K. & Klingensmith, G.J. Menarche delay and menstrual irregularities persist in adolescents with type 1 diabetes. Reproductive Biology and Endocrinology: RB&E 9, 61, doi:10.1186/1477-7827-9-61 (2011).

Shevah, O. & Laron, Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society 17, 54–57, doi:10.1016/j.ghir.2006.10.007 (2007).

Smith, R.N., Mann, N.J., Braue, A., Makelainen, H. & ­Varigos, G.A. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial.
The American Journal of Clinical Nutrition 86, 107–115 (2007).

Spalding, K.L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787, doi:10.1038/nature06902 (2008).

Steuerman, R., Shevah, O. & Laron, Z. Congenital IGF1 deficiency tends to confer protection against post-natal deve­lopment of malignancies. European Journal of Endocrinology / European Federation of Endocrine Societies 164, 485–489, doi:10.1530/EJE-10-0859 (2011).

Stothard, K.J., Tennant, P.W., Bell, R. & Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA: the Journal of the American Medical Association 301, 636–650, doi:10.1001/jama.2009.113 (2009).

Thiboutot, D.M. & Strauss, J.S. Diet and acne revisited. Archives of Dermatology 138, 1591–1592 (2002).

Timoteo, C. et al. [Growth and puberty in type 1 diabetes mellitus – experience from a pediatric endocrinology unit]. Acta Medica Portuguesa 25, 213–218 (2012).

Villamor, E. & Cnattingius, S. Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. The Lancet 368, 1164–1170, doi:10.1016/S0140-6736(06)69473-7 (2006).

Werner, B. Growth In Sweden. Surveillance of growth patterns and epidemiological monitoring of secular changes in height and weight among children and adolescents, Karolinska Institutet (2007).

Williams, S. & Dickson, N. Early growth, menarche, and adiposity rebound. The Lancet 359, 580–581, doi:10.1016/S0140-6736(02)07715-2 (2002).

Yu, Z. et al. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLOS ONE 8, e61627, doi:10.1371/journal.pone.0061627 (2013).

Zachrisson, I., Brismar, K., Hall, K., Wallensteen, M. & Dahlqvist, G. Determinants of growth in diabetic pubertal subjects. Diabetes Care 20, 1261–1265 (1997).

8. Motion – tandborstning för insidan av kroppen

van der Borght, K. et al. Reduced neurogenesis in the rat hippocampus following high fructose consumption. Regulatory Peptides 167, 26–30, doi:10.1016/j.regpep.2010.11.002 (2011).

Burrows, M. Exercise and Bone Mineral Accrual in Children and Adolescents. Journal of Sports Science & Medicine 6, 305–312 (2007).

Chaieb, L., Antal, A., Ambrus, G.G. & Paulus, W. Brain-derived neurotrophic factor: its impact upon neuroplasticity and neuroplasticity inducing transcranial brain stimulation protocols. Neurogenetics, doi:10.1007/s10048-014-0393-1 (2014).

Chastin, S.F., Mandrichenko, O. & Skelton, D.A. The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study. BMC Public Health 14, 4, doi:10.1186/1471-2458-14-4 (2014).

Egli, L. et al. Exercise prevents fructose-induced hypertrigly­ceridemia in healthy young subjects. Diabetes 62, 2259–2265, doi:10.2337/db12-1651 (2013).

Erickson, K.I. et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America 108, 3017–3022, doi:10.1073/pnas.1015950108 (2011).

Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nature Medicine 4, 1313–1317, doi:10.1038/3305 (1998).

Griffin, E.W. et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior 104, 934–941, doi:10.1016/j.physbeh.2011.06.005 (2011).

Hashimoto, K. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Progress in Neurobiology 100, 15–29, doi:10.1016/j.pneurobio.2012.09.001 (2013).

Kerti, L. et al. Higher glucose levels associated with lower me­mory and reduced hippocampal microstructure. Neurology 81, 1746–1752, doi:10.1212/01.wnl.0000435561.00234.ee (2013).

Krabbe, K.S. et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50, 431–438, doi:10.1007/s00125-006-0537-4 (2007).

Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nature Neuroscience 10, 1089–1093, doi:10.1038/nn1971 (2007).

Nagahara, A.H. & Tuszynski, M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Reviews. Drug Discovery 10, 209–219, doi:10.1038/nrd3366 (2011).

Roig, M., Nordbrandt, S., Geertsen, S.S. & Nielsen, J.B. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neuroscience & Biobehavioral Reviews 37, 1645–1666, doi:10.1016/j.neubiorev.2013.06.012 (2013).

Soares, E. et al. Spatial memory impairments in a prediabetic rat model. Neuroscience 250, 565–577, doi:10.1016/j.neuroscience.2013.07.055 (2013).

Statens folkhälsoinstitut. Vol. A 2011:06 (red. Statens folkhälsoinstitut) (Statens folkhälsoinstitut, 2011).

Statens folkhälsoinstitut. (red. Statens folkhälsoinstitut) (2009/2010).

Tenforde, A.S. & Fredericson, M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM & R: the Journal of injury, function, and rehabilitation 3, 861–867, doi:10.1016/j.pmrj.2011.05.019 (2011).

Tobias, J.H. et al. Physical Activity and Bone: May the Force be with You. Frontiers in Endocrinology 5, 20, doi:10.3389/fendo.2014.00020 (2014).

Whiteman, A.S. et al. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behavioural Brain Research 259, 302–312, doi:10.1016/j.bbr.2013.11.023 (2014).

Wrann, C.D. et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metabolism 18, 649–659, doi:10.1016/j.cmet.2013.09.008 (2013).

10. En oreda i tarmfloran

Adler, C.J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45, 450–455, 455e451, doi:10.1038/ng.2536 (2013).

Austin, G.L. et al. A very low-carbohydrate diet improves symptoms and quality of life in diarrhea-predominant irritable bowel syndrome. Clinical Gastroenterology and Hepatology : the Official Clinical Practice Journal of the American Gastro­enterological Association 7, 706–708 e701, doi:10.1016/j.cgh.2009.02.023 (2009).

Bager, P., Wohlfahrt, J. & Westergaard, T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clinical & Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 38, 634–642, doi:10.1111/j.1365-2222.2008.02939.x (2008).

Barbara, G. et al. Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. Journal of Clinical Gastroenterology 46 Suppl, S52–55, doi:10.1097/MCG.0b013e318264e918 (2012).

Bisgaard, H. et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. The Journal of Allergy and Clinical Immunology 128, 646–652 e641–645, doi:10.1016/j.jaci.2011.04.060 (2011).

Cardwell, C.R. et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 51, 726–735, doi:10.1007/s00125-008-0941-z (2008).

Carroll, I.M., Ringel-Kulka, T., Siddle, J.P. & Ringel, Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterology & motility: the Official Journal of the European Gastrointestinal Motility Society 24, 521–530, e248, doi:10.1111/j.1365-2982.2012.01891.x (2012).

Compare, D. & Nardone, G. The role of gut microbiota in the pathogenesis and management of allergic diseases. European Review for Medical and Pharmacological Sciences 17 Suppl 2, 11–17 (2013).

Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588, doi:10.1038/nature12480 (2013).

Debley, J.S., Smith, J.M., Redding, G.J. & Critchlow, C.W. Childhood asthma hospitalization risk after cesarean delivery in former term and premature infants. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology 94, 228–233, doi:10.1016/S1081-1206(10)61300-2 (2005).

Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. ­Pediatrics 125, e1433-1440, doi:10.1542/peds.2009-2260 (2010).

Dominguez-Bello, M.G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America 107, 11971–11975, doi:10.1073/pnas.1002601107 (2010).

Gecse, K. et al. Leaky gut in patients with diarrhea-predominant irritable bowel syndrome and inactive ulcerative colitis. Digestion 85, 40–46, doi:10.1159/000333083 (2012).

Halmos, E.P., Power, V.A., Shepherd, S.J., Gibson, P.R. & Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75 e65, doi:10.1053/j.gastro.2013.09.046 (2014).

Hesselmar, B. et al. Pacifier cleaning practices and risk of allergy­ development. Pediatrics 131, e1829–1837, doi:10.1542/peds.2012-3345 (2013).

Hooper, L.V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884, doi:10.1126/science.291.5505.881 (2001).

Indrio, F. et al. Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial. JAMA Pediatrics 168, 228–233, doi:10.1001/jamapediatrics.2013.4367 (2014).

Jakobsson, H.E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 63, 559–566, doi:10.1136/gutjnl-2012-303249 (2014).

Johansson, M.A., Sjogren, Y.M., Persson, J.O., Nilsson, C. & Sverremark–Ekstrom, E. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLOS ONE 6, e23031, doi:10.1371/journal.pone.0023031 (2011).

Kalliomaki, M. et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. The Journal of Allergy and Clinical Immunology 107, 129–134, doi:10.1067/mai.2001.111237 (2001).

Koo, H., Xiao, J., Klein, M.I. & Jeon, J.G. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. Journal of Bacteriology 192, 3024–3032, doi:10.1128/JB.01649-09 (2010).

Larsen, C.S. Biological changes in human populations with agriculture. Annual Review of Anthro­pology 24, 185–213 (1995).

Lauritano, E.C. et al. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. The American Journal of Gastroenterology 103, 2031–2035 (2008).

Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546, doi:10.1038/nature12506 (2013).

Lozinsky, A.C., Boe, C., Palmero, R. & Fagundes-Neto, U. Fructose malabsorption in children with functional digestive disorders. Arquivos de Gastroenterologia 50, 226–230, doi:10.1590/S0004-28032013000200040 (2013).

Ly, N.P., Litonjua, A., Gold, D.R. & Celedon, J.C. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? The Journal of Allergy and Clinical Immunology 127, 1087–1094; quiz 1095-1086, doi:10.1016/j.jaci.2011.02.015 (2011).

McLoughlin, R.M. & Mills, K.H. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. The Journal of Allergy and Clinical Immunology 127, 1097–1107; quiz 1108-1099, doi:10.1016/j.jaci.2011.02.012 (2011).

Noverr, M.C. & Huffnagle, G.B. The ’microflora hypothesis’ of allergic diseases. Clinical & Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 35, 1511–1520, doi:10.1111/j.1365-2222.2005.02379.x (2005).

Ohman, L. & Simren, M. Intestinal microbiota and its role in irritable bowel syndrome (IBS). Current Gastroenterology Reports 15, 323, doi:10.1007/s11894-013-0323-7 (2013).

Okada, H., Kuhn, C., Feillet, H. & Bach, J.F. The ’hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clinical & Experimental Immunology 160, 1–9, doi:10.1111/j.1365-2249.2010.04139.x (2010).

Olén, O., Uusijärvi, A., Grimheden, P., Grahnquist, L. Regionalt vårdprogram – Smärtdominerade funktionella mag-tarmsjukdomar hos barn och ungdomar 2013. (Stockholms läns landsting, 2013).

Pakarinen, J. et al. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia. Environmental Microbiology 10, 3317–3325, doi:10.1111/j.1462-2920.2008.01723.x (2008).

Posserud, I., Stotzer, P.O., Bjornsson, E.S., Abrahamsson, H. & Simren, M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut 56, 802–808, doi:10.1136/gut.2006.108712 (2007).

Ridaura, V.K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214, doi:10.1126/science.1241214 (2013).

Saadi, M. & McCallum, R.W. Rifaximin in irritable bowel
syndrome: rationale, evidence and clinical use. Therapeutic
Advances in Chronic Disease
4, 71–75, doi:10.1177/20406223
12472008 (2013).

Sajantila, A. Major historical dietary changes are reflected in the dental microbiome of ancient skeletons. Investigative Genetics 4, 10, doi:10.1186/2041-2223-4-10 (2013).

Scarpellini, E. et al. Rifaximin treatment for small intestinal bacterial overgrowth in children with irritable bowel syndrome. European Review for Medical and Pharmacological Sciences 17, 1314–1320 (2013).

Sekirov, I., Russell, S.L., Antunes, L.C. & Finlay, B.B. Gut microbiota in health and disease. Physiological Reviews 90, 859–904, doi:10.1152/physrev.00045.2009 (2010).

Sepp, E. et al. Intestinal microflora of Estonian and Swedish infants. Acta Paediatrica 86, 956–961 (1997).

Shelby, G.D. et al. Functional abdominal pain in childhood and long-term vulnerability to anxiety disorders. Pediatrics 132, 475–482, doi:10.1542/peds.2012-2191 (2013).

Simren, M. Diet as a therapy for irritable bowel syndrome: progress at last. Gastroenterology 146, 10–12, doi:10.1053/j.gastro.2013.11.027 (2014).

Sjogren, Y.M. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical & Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 39, 1842–1851, doi:10.1111/j.1365-2222.2009.03326.x (2009).

Socialstyrelsen. Barns och ungas hälsa, vård och omsorg 2013. (2013).

Sommer, F. & Backhed, F. The gut microbiota – masters of host development and physiology. Nature reviews. Microbiology 11, 227–238, doi:10.1038/nrmicro2974 (2013).

Strachan, D.P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

Turnbaugh, P.J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 1, 6ra14, doi:10.1126/scitranslmed.3000322 (2009).

Turnbaugh, P.J., Backhed, F., Fulton, L. & Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe 3, 213–223, doi:10.1016/j.chom.2008.02.015 (2008).

Ungar, P.S., Sorrentino, J. & Rose, J.C. Evolution of human teeth and jaws: implications for dentistry and orthodontics. Evolutionary Anthropology 21, 94–95 (2012).

von Hertzen, L. et al. Microbial content of drinking water in Finnish and Russian Karelia – implications for atopy prevalence. Allergy 62, 288–292, doi:10.1111/j.1398-9995.2006.01281.x (2007).

Wold, A.E. The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy 53, 20–25 (1998).

Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227, doi:10.1038/nature11053 (2012).

11. Om tarmar som läcker, gluten och typ 1-diabetes

Bager, P., Simonsen, J., Nielsen, N.M. & Frisch, M. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflammatory Bowel Diseases 18, 857–862, doi:10.1002/ibd.21805 (2012).

Benno, P., Ernberg, I., Midtvedt, T., Möllby, R., Norin, E. Magen: bakterier, buller och brak. (Karolinska Institutet University Press AB, 2012).

Bergheim, I. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. Journal of Hepatology 48, 983–992, doi:10.1016/j.jhep.2008.01.035 (2008).

Berhan, Y. et al. Thirty years of prospective nationwide incidence of childhood type 1 diabetes: the accelerating increase by time tends to level off in Sweden. Diabetes 60, 577–581, doi:10.2337/db10-0813 (2011).

Bernstein, C.N., Wajda, A. & Blanchard, J.F. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology 129, 827–836, doi:10.1053/j.gastro.2005.06.021 (2005).

Biesiekierski, J.R. et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. The American Journal of Gastroente­rology 106, 508–514; quiz 515, doi:10.1038/ajg.2010.487 (2011).

Biesiekierski, J.R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145, 320–328 e321–323, doi:10.1053/j.gastro.2013.04.051 (2013).

Bosi, E. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827, doi:10.1007/s00125-006-0465-3 (2006).

Buschard, K. What causes type 1 diabetes? Lessons from animal models. APMIS. Supplementum, 1–19, doi:10.1111/j.1600-0463.2011.02765.x (2011).

Bybrant, M.C., Ortqvist, E., Lantz, S. & Grahnquist, L. High prevalence of celiac disease in Swedish children and adole­scents with type 1 diabetes and the relation to the Swedish epidemic of celiac disease: a cohort study. Scandinavian Journal of Gastroenterology 49, 52–58, doi:10.3109/00365521.
2013.846403 (2014).

Carratu, R. et al. Altered intestinal permeability to mannitol in diabetes mellitus type I. Journal of Pediatric Gastroentero­logy and Nutrition 28, 264–269 (1999).

Carroccio, A. et al. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. The American Journal of Gastroenterology 107, 1898–1906; quiz 1907, doi:10.1038/ajg.2012.236 (2012).

Cosnes, J. et al. Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association 6, 753–758, doi:10.1016/j.cgh.2007.12.022 (2008).

Coyne, C.B. & Bergelson, J.M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131, doi:10.1016/j.cell.2005.10.035 (2006).

Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125, e1433–1440, doi:10.1542/peds.2009-2260 (2010).

Dotta, F. et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proceedings of the National Academy of Sciences of the United States of America 104, 5115–5120, doi:10.1073/pnas.0700442104 (2007).

Drago, S. et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology 41, 408–419, doi:10.1080/00365520500235334 (2006).

Economou, M. & Pappas, G. New global map of Crohn’s disease: Genetic, environmental, and socioeconomic correlations. Inflammatory Bowel Diseases 14, 709–720, doi:10.1002/ibd.20352 (2008).

Elfstrom, P., Montgomery, S.M., Kampe, O., Ekbom, A. & Ludvigsson, J.F. Risk of thyroid disease in individuals with celiac disease. The Journal of Clinical Endocrinology and Metabolism 93, 3915–3921, doi:10.1210/jc.2008-0798 (2008).

Fasano, A. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Annals of the New York Academy of Sciences 915, 214–222 (2000).

Fasano, A. & Catassi, C. Clinical practice. Celiac disease. The New England Journal of Medicine 367, 2419–2426, doi:10.1056/NEJMcp1113994 (2012).

Fasano, A. et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proceedings of the National Academy of Sciences of the United States of America 88, 5242–5246 (1991).

Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. The Lancet 355, 1518–1519, doi:10.1016/S0140-6736(00)02169-3 (2000).

Francavilla, R. et al. Clinical, serologic, and histologic features of gluten sensitivity in children. The Journal of Pediatrics 164, 463–467 e461, doi:10.1016/j.jpeds.2013.10.007 (2014).

Frisk, G., Hansson, T., Dahlbom, I. & Tuvemo, T. A unifying hypothesis on the development of type 1 diabetes and celiac disease: gluten consumption may be a shared causative factor. Medical Hypotheses 70, 1207–1209, doi:10.1016/j.mehy.2007.05.058 (2008).

Fu, J.F. et al. Status and trends of diabetes in Chinese children: analysis of data from 14 medical centers. World Journal of Pediatrics: WJP 9, 127–134, doi:10.1007/s12519-013-0414-4 (2013).

Gerova, V.A., Stoynov, S.G., Katsarov, D.S. & Svinarov, D.A. Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World Journal of Gastroenterology: WJG 17, 2211–2215, doi:10.3748/wjg.v17.i17. (2011).

Gillett, P.M. et al. High prevalence of celiac disease in patients with type 1 diabetes detected by antibodies to endomysium and tissue transglutaminase. Canadian Journal of Gastroenterology = Journal Canadien de Gastroenterologie 15, 297–301 (2001).

Gomez-Diaz, R.A. et al. Incidence of type 1 diabetes in Mexico: data from an institutional register 2000–2010. Diabetes Care 35, e77, doi:10.2337/dc12-0844 (2012).

Hold, G.L. et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World Journal of Gastroenterology: WJG 20, 1192–1210, doi:10.3748/wjg.v20.i5.1192 (2014).

Honeyman, M.C. et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49, 1319–1324 (2000).

Ivarsson, A. et al. Epidemic of coeliac disease in Swedish child­ren. Acta Paediatrica 89, 165–171 (2000).

Ivarsson, A. et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 131, e687–694, doi:10.1542/peds.2012-1015 (2013).

Kondrashova, A. et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Annals of Medicine 40, 223–231, doi:10.1080/07853890701678689 (2008).

Kuitunen, M., Saukkonen, T., Ilonen, J., Akerblom, H.K. & Savilahti, E. Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35, 365–368 (2002).

Laatikainen, T. et al. Allergy gap between Finnish and Russian Karelia on increase. Allergy 66, 886–892, doi:10.1111/j.1398-9995.2010.02533.x (2011).

LaPorte, R.E., Matsushima, M., Chang, Y.-F. in Diabetes in America, 2:a uppl. (red. M.I. Harris) Ch. 3, 733 (National Diabetes Data Group, 1995).

Leonard, M.M. & Vasagar, B. US perspective on gluten-related diseases. Clinical and Experimental Gastroenterology 7, 25–37, doi:10.2147/CEG.S54567 (2014).

Lepage, P. et al. Twin study indicates loss of interaction ­between microbiota and mucosa of patients with ulcerative colitis. Gastro­enterology 141, 227–236, doi:10.1053/j.gastro.2011.04.011 (2011).

Ludvigsson, J.F. et al. The Oslo definitions for coeliac disease and related terms. Gut 62, 43–52, doi:10.1136/gutjnl-2011-301346 (2013).

Ludvigsson, J.F., Lindelof, B., Zingone, F. & Ciacci, C. Psoriasis in a nationwide cohort study of patients with celiac disease. Journal of Investigative Dermatology 131, 2010–2016, doi:10.1038/jid.2011.162 (2011).

Ludvigsson, J.F., Rubio-Tapia, A., Chowdhary, V., Murray, J.A. & Simard, J.F. Increased risk of systemic lupus erythematosus in 29,000 patients with biopsy-verified celiac disease. The Journal of Rheumatology 39, 1964–1970, doi:10.3899/jrheum.120493 (2012).

Malmborg, P., Bahmanyar, S., Grahnquist, L., Hildebrand, H. & Montgomery, S. Cesarean section and the risk of pediatric Crohn’s disease. Inflammatory Bowel Diseases 18, 703–708, doi:10.1002/ibd.21741 (2012).

Marietta, E.V. et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLOS ONE 8, e78687, doi:10.1371/journal.pone.0078687 (2013).

Marild, K. et al. Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC Gast­roenterology 13, 109, doi:10.1186/1471-230X-13-109 (2013).

McGuckin, M.A., Eri, R., Simms, L.A., Florin, T.H. & Radford-Smith, G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflammatory Bowel Diseases 15, 100–113, doi:10.1002/ibd.20539 (2009).

Molodecky, N.A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 e42; quiz e30, doi:10.1053/j.gastro.2011.10.001 (2012).

Nadal, I., Donat, E., Ribes-Koninckx, C., Calabuig, M. & Sanz, Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of Medical Microbio­logy 56, 1669–1674, doi:10.1099/jmm.0.47410-0 (2007).

Norris, J.M. et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA: the Journal of the American Medical Association 293, 2343–2351, doi:10.1001/jama.293.19.2343 (2005).

Norris, J.M. et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA: the Journal of the American Medical Association 290, 1713–1720, doi:10.1001/jama.290.13.1713 (2003).

Oikarinen, M. et al. Detection of enteroviruses in the intestine of type 1 diabetic patients. Clinical & Experimental Immunology 151, 71–75, doi:10.1111/j.1365-2249.2007.03529.x (2008).

Payne, A.N., Chassard, C. & Lacroix, C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obesity Reviews: an Official Journal of the International Association for the Study of Obesity 13, 799–809, doi:10.1111/j.1467-789X.2012.01009.x (2012).

Pozo-Rubio, T. et al. Immune development and intestinal microbiota in celiac disease. Clinical and Developmental Immunology 2012, 654143, doi:10.1155/2012/654143 (2012).

Sanchez, E., Donat, E., Ribes-Koninckx, C., Fernandez-Murga, M.L. & Sanz, Y. Duodenal-mucosal bacteria associated with celiac disease in children. Applied and Environmental Microbiology 79, 5472–5479, doi:10.1128/AEM.00869-13 (2013).

Sapone, A. et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55, 1443–1449 (2006).

Scaldaferri, F. et al. Gut microbial flora, prebiotics, and probio­tics in IBD: their current usage and utility. BioMed Research International 2013, 435268, doi:10.1155/2013/435268 (2013).

Snell-Bergeon, J.K. et al. Early childhood infections and the risk of islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetes Care 35, 2553–2558, doi:10.2337/dc12-0423 (2012).

Sofi, F. et al. Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial. The British Journal of Nutrition, 1–8, doi:10.1017/S000711451400018X (2014).

Soltesz, G., Patterson, C.C., Dahlquist, G. & Group, E.S. Worldwide childhood type 1 diabetes incidence – what can we learn from epidemiology? Pediatric Diabetes 8 Suppl 6, 6–14, doi:10.1111/j.1399-5448.2007.00280.x (2007).

Spruss, A. & Bergheim, I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. The Journal of Nutritional Biochemistry 20, 657–662, doi:10.1016/j.jnutbio.2009.05.006 (2009).

Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104, doi:10.1002/hep.23122 (2009).

Stene, L.C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. The American Journal of Gastroenterology 101, 2333–2340, doi:10.1111/j.1572-0241.2006.00741.x (2006).

Svenska Barnläkarföreningen. Celiaki hos barn och ungdomar – aktuell översikt och vårdprogram (2012). (Finns att ta del av på nätet som pdf.)

Vaarala, O. Leaking gut in type 1 diabetes. Current Opinion in Gastroenterology 24, 701–706, doi:10.1097/MOG.0b013e
32830e6d98 (2008).

Ventura, A., Magazzu, G. & Greco, L. Duration of exposure to gluten and risk for autoimmune disorders in patients
with celiac disease. SIGEP Study Group for Autoimmune Disorders in Celiac Disease. Gastroenterology 117, 297–303 (1999).

Yuan, J. et al. The tip of the »celiac iceberg« in China: a syste­matic review and meta-analysis. PlOS ONE 8, e81151, doi:10.1371/journal.pone.0081151 (2013).

Ziegler, A.G., Schmid, S., Huber, D., Hummel, M. & Bonifacio, E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA: the Journal of the American Medical Association 290, 1721–1728, doi:10.1001/jama.290.13.1721 (2003).

13. I hjärnans vindlande vrår

Abdallah, M.W. et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. The World Journal of Biological Psychiatry : the Official Journal of the World Federation of Societies of Biological Psychiatry 14, 528–538, doi:10.3109/15622975.2011.639803 (2013).

Abrahams, J. Reason for optimism: a parent’s perspective. Journal of Child Neurology 28, 1052–1053, doi:10.1177/08830738
13487602 (2013).

Accardi, M.V. et al. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nature Communications 5, 3168, doi:10.1038/ncomms4168 (2014).

Atladottir, H.O. et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 124, 687–694, doi:10.1542/peds.2008-2445 (2009).

Atladottir, H.O., Henriksen, T.B., Schendel, D.E. & Parner, E.T. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 130, e1447–1454, doi:10.1542/peds.2012-1107 (2012).

Autism, Developmental Disabilities Monitoring Network Surveillance Year Principal, I., Centers for Disease, C. & Prevention. Prevalence of autism spectrum disorders – Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. Morbidity & Mortality Weekly Report. Surveillance Summaries 61, 1–19 (2012).

Burk, K. et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain: a Journal of Neurology 124, 1013–1019 (2001).

Chaidez, V., Hansen, R.L. & Hertz-Picciotto, I. Gastrointestinal Problems in Children with Autism, Developmental Delays or Typical Development. Journal of Autism and Developmental Disorders, doi:10.1007/s10803-013-1973-x (2013).

Chandler, S. et al. Parent-reported gastro-intestinal symptoms in children with autism spectrum disorders. Journal of Autism and Developmental Disorders 43, 2737–2747, doi:10.1007/s10803-013-1768-0 (2013).

Dahlin, M., Mansson, J.E. & Amark, P. CSF levels of dopamine and serotonin, but not norepinephrine, metabolites are influenced by the ketogenic diet in children with epilepsy. Epilepsy Research 99, 132–138, doi:10.1016/j.eplepsyres.2011.11.003 (2012).

Di Lorenzo, C. et al. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis? Functional Neuro­logy, 1–4 (2013).

Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America 108, 3047–3052, doi:10.1073/pnas.1010529108 (2011).

El-Chammas, K. et al. Pharmacologic treatment of pediatric headaches: a meta-analysis. JAMA Pediatrics 167, 250–258, doi:10.1001/jamapediatrics.2013.508 (2013).

Epi, K.C. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221, doi:10.1038/nature12439 (2013).

Evangeliou, A. et al. Application of a ketogenic diet in children with autistic behavior: pilot study. Journal of Child Neurology 18, 113–118 (2003).

Finegold, S.M. et al. Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 35, S6–S16, doi:10.1086/341914 (2002).

Frye, R.E. et al. A Review of Traditional and Novel Treatments for Seizures in Autism Spectrum Disorder: Findings from a Systematic Review and Expert Panel. Frontiers in Public Health 1, 31, doi:10.3389/fpubh.2013.00031 (2013).

Gasior, M., Rogawski, M.A. & Hartman, A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behavioural Pharmacology 17, 431–439 (2006).

Genuneit, J. et al. Infant atopic eczema and subsequent attention-deficit/hyperactivity disorder – A prospective birth cohort study. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 25, 51–56, doi:10.1111/pai.12152 (2014).

Gilbert, J.A., Krajmalnik-Brown, R., Porazinska, D.L., Weiss, S.J. & Knight, R. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell 155, 1446–1448, doi:10.1016/j.cell.2013.11.035 (2013).

Giulivi, C. et al. Mitochondrial dysfunction in autism. JAMA : the Journal of the American Medical Association 304, 2389–2396, doi:10.1001/jama.2010.1706 (2010).

Greene, A.E., Todorova, M.T. & Seyfried, T.N. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. Journal of Neurochemistry 86, 529–537 (2003).

Hadjivassiliou, M. et al. Gluten ataxia in perspective: epidemio­logy, genetic susceptibility and clinical characteristics. Brain: a Journal of Neurology 126, 685–691 (2003).

Hartman, A.L., Gasior, M., Vining, E.P. & Rogawski, M.A. The neuropharmacology of the ketogenic diet. Pediatric Neurology 36, 281–292, doi:10.1016/j.pediatrneurol.2007.02.008 (2007).

Hertz-Picciotto, I. & Delwiche, L. The rise in autism and the role of age at diagnosis. Epidemiology 20, 84–90, doi:10.1097/EDE.0b013e3181902d15 (2009).

Hsiao, E.Y. et al. Microbiota modulate behavioral and physio­logical abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463, doi:10.1016/j.cell.2013.11.024 (2013).

Jarrett, S.G., Milder, J.B., Liang, L.P. & Patel, M. The ketogenic diet increases mitochondrial glutathione levels. Journal of Neurochemistry 106, 1044–1051, doi:10.1111/j.1471-4159.2008.05460.x (2008).

Kang, D.W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLOS ONE 8, e68322, doi:10.1371/journal.pone.0068322 (2013).

Keil, A. et al. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 21, 805–808, doi:10.1097/EDE.0b013e3181f26e3f (2010).

Khurana, D.S., Valencia, I., Goldenthal, M.J. & Legido, A. Mitochondrial dysfunction in epilepsy. Seminars in Pediatric Neurology 20, 176–187, doi:10.1016/j.spen.2013.10.001 (2013).

Kohane, I.S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PloS one 7, e33224, doi:10.1371/journal.pone.0033224 (2012).

Kossoff, E.H. & Andermann, F. Migraine and epilepsy. Seminars in Pediatric Neurology 17, 117–122, doi:10.1016/j.spen.2010.04.005 (2010).

Kossoff, E.H., Cervenka, M.C., Henry, B.J., Haney, C.A. & Turner, Z. A decade of the modified Atkins diet (2003-2013): Results, insights, and future directions. Epilepsy & Behavior : E&B 29, 437–442 (2013).

Kossoff, E.H., Huffman, J., Turner, Z. & Gladstein, J. Use of the modified Atkins diet for adolescents with chronic daily headache. Cephalalgia: an International Journal of Headache 30, 1014–1016, doi:10.1111/j.1468-2982.2009.02016.x (2010).

Kossoff, E.H., Krauss, G.L., McGrogan, J.R. & Freeman, J.M. Efficacy of the Atkins diet as therapy for intractable epilepsy. Neurology 61, 1789–1791 (2003).

Krakowiak, P. et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129, e1121–1128, doi:10.1542/peds.2011-2583 (2012).

Lau, N.M. et al. Markers of Celiac Disease and Gluten Sensiti­vity in Children with Autism. PloS one 8, e66155, doi:10.1371/journal.pone.0066155 (2013).

Lefevre, F. & Aronson, N. Ketogenic diet for the treatment of refractory epilepsy in children: A systematic review of efficacy. Pediatrics 105, E46 (2000).

Ludvigsson, J.F. et al. The Oslo definitions for coeliac disease and related terms. Gut 62, 43–52, doi:10.1136/gutjnl-2011-301346 (2013).

Ludvigsson, J.F., Reichenberg, A., Hultman, C.M. & Murray, J.A. A nationwide study of the association between celiac disease and the risk of autistic spectrum disorders. JAMA Psychiatry 70, 1224–1230, doi:10.1001/jamapsychiatry.2013.2048 (2013).

Ludvigsson, J.F., Zingone, F., Tomson, T., Ekbom, A. & Ciacci, C. Increased risk of epilepsy in biopsy-verified celiac disease: a population-based cohort study. Neurology 78, 1401–1407, doi:10.1212/WNL.0b013e3182544728 (2012).

de Magistris, L. et al. Antibodies against food antigens in patients with autistic spectrum disorders. BioMed Research International 2013, 729349, doi:10.1155/2013/729349 (2013).

Malkova, N.V., Yu, C.Z., Hsiao, E.Y., Moore, M.J. & Patterson, P.H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain, Behavior, and Immunity 26, 607–616, doi:10.1016/j.bbi.2012.01.011 (2012).

Millward, C., Ferriter, M., Calver, S. & Connell-Jones, G. Gluten- and casein-free diets for autistic spectrum disorder. The Cochrane Database of Systematic Reviews, CD003498, doi:10.1002/14651858.CD003498.pub3 (2008).

Muzykewicz, D.A. et al. Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 50, 1118–1126, doi:10.1111/j.1528-1167.2008.01959.x (2009).

Nanda, A., Chen, M.H., Moran, B.J., Braccioforte, M.H. & D’Amico, A.V. Cardiovascular comorbidity and mortality in men with prostate cancer treated with brachytherapy-based radiation with or without hormonal therapy. International Journal of Radiation Oncology, Biology, Physics 85, e209–215, doi:10.1016/j.ijrobp.2012.11.039 (2013).

Nygren, G. et al. The prevalence of autism spectrum disorders in toddlers: a population study of 2-year-old Swedish child­ren. Journal of Autism and Developmental Disorders 42, 1491–1497, doi:10.1007/s10803-011-1391-x (2012).

Parr, J. Autism. Clinical Evidence 2010 (2010).

Pelsser, L.M. et al. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): a randomised controlled trial. The Lancet 377, 494–503, doi:10.1016/S0140-6736(10)62227-1 (2011).

Pfeifer, H.H. & Thiele, E.A. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 65, 1810–1812, doi:10.1212/01.wnl.0000187071.
24292.9e (2005).

Polo-Kantola, P. et al. Obstetric risk factors and autism spectrum disorders in Finland. The Journal of Pediatrics 164, 358–365, doi:10.1016/j.jpeds.2013.09.044 (2014).

Rossignol, D.A. & Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Molecular Psychiatry 17, 290–314, doi:10.1038/mp.2010.136 (2012).

Ruskin, D.N. et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PloS one 8, e65021, doi:10.1371/journal.pone.0065021 (2013).

Selassie, A.W. et al. Epilepsy beyond seizure: a population-based study of comorbidities. Epilepsy Research 108, 305–315, doi:10.1016/j.eplepsyres.2013.12.002 (2014).

Sharp, W.G., Burrell, T.L. & Jaquess, D.L. The Autism MEAL Plan: A parent-training curriculum to manage eating aversions and low intake among children with autism. doi:10.1177/
1362361313489190 (2013).

Shi, L. et al. Activation of the maternal immune system alters cerebellar development in the offspring. Brain, Behavior, and Immunity 23, 116–123, doi:10.1016/j.bbi.2008.07.012 (2009).

Strahlman, R.S. Can ketosis help migraine sufferers? A case report. Headache 46, 182, doi:10.1111/j.1526-4610.2006.00321_5.x (2006).

Thiele, E.A. Implications of dietary therapy into the 21st century: conclusion to special issue. Journal of Child Neurology 28, 1054–1055, doi:10.1177/0883073813488827 (2013).

Wang, L.W., Tancredi, D.J. & Thomas, D.W. The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. Journal of Developmental & Behavioral Pediatrics: JDBP 32, 351–360, doi:10.1097/DBP.0b013e31821bd06a (2011).

Wheless, J.W. History of the ketogenic diet. Epilepsia 49 Suppl 8, 3–5, doi:10.1111/j.1528-1167.2008.01821.x (2008).

Wheless, J.W. History and Origins of the Ketogenic Diet. I Epilepsy and the Ketogenic Diet (red. C.E. Stafstrom, Rho, J.M.) Kapitel 2, 31–50 (Humana Press, 2004).

Whiteley, P. et al. Gluten- and casein-free dietary intervention for autism spectrum conditions. Frontiers in Human Neuroscience 6, 344, doi:10.3389/fnhum.2012.00344 (2012).

Whiteley, P. et al. The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for child­ren with autism spectrum disorders. Nutritional Neuroscience 13, 87–100, doi:10.1179/147683010X12611460763922 (2010).

Williams, B.L. et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PloS one 6, e24585, doi:10.1371/journal.pone.0024585 (2011).

Xu, G., Jing, J., Bowers, K., Liu, B. & Bao, W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: a systematic review and meta-analysis. Journal of Autism and Developmental Disorders 44, 766–775, doi:10.1007/s10803-013-1928-2 (2014).

Yaghmaie, P., Koudelka, C.W. & Simpson, E.L. Mental health comorbidity in patients with atopic dermatitis. The Journal of Allergy and Clinical Immunology 131, 428–433, doi:10.1016/j.jaci.2012.10.041 (2013).

Yeargin-Allsopp, M. et al. Prevalence of autism in a US metropolitan area. JAMA: the Journal of the American Medical Association 289, 49–55 (2003).

Zioudrou, C., Streaty, R.A. & Klee, W.A. Opioid peptides derived from food proteins. The exorphins. The Journal of Biological Chemistry 254, 2446–2449 (1979).

15. Livsmedelsverket: one size fits all

Chowdhury, R., Warnakula, S., Kunutsor, S., Crowe, F., Ward, H.A., Johnson, L., Franco, O.H., Butterworth, A.S., Forouhi, N.G., Thompson, S.G., Khaw, K.-T., Mozaffarian, D., Danesh, J. and Di Angelantonio, E. Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk: A Systematic Review and Meta-analysis. Annals of Internal Medicine 160, 398–406 (2014).

European_Heart_Network_and_European_Society_of_Cardiology. European Cardiovascular Disease Statistics 2012. (European Heart Network and European Society of Cardio­logy, 2012).

Gluck, M.E. et al. Impaired glucose regulation is associated with poorer performance on the Stroop Task. Physiology & Beha­vior 122, 113–119, doi:10.1016/j.physbeh.2013.09.001 (2013).

Haber, G.B., Heaton, K.W., Murphy, D. & Burroughs, L.F. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. The Lancet 2, 679–682 (1977).

Hooper, L. et al. Reduced or modified dietary fat for preventing cardiovascular disease. The Cochrane Database of Syste­matic Reviews 5, CD002137, doi:10.1002/14651858.CD002137.pub3 (2012).

Keys, A. et al. The diet and 15-year death rate in the seven countries study. American Journal of Epidemiology 124, 903–915 (1986).

Kratz, M., Baars, T. & Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. European Journal of Nutrition 52, 1–24, doi:10.1007/s00394-012-0418-1 (2013).

Lennerz, B.S. et al. Effects of dietary glycemic index on brain regions related to reward and craving in men. The American Journal of Clinical Nutrition 98, 641–647, doi:10.3945/ajcn.113.064113 (2013).

Lim, J.S., Mietus-Snyder, M., Valente, A., Schwarz, J.M. & Lustig, R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews. Gastroenterology & Hepatology 7, 251–264, doi:10.1038/nrgastro.2010.41 (2010).

Little, T.J. & Feinle-Bisset, C. Effects of dietary fat on appetite and energy intake in health and obesity – oral and gastro­intestinal sensory contributions. Physiology & Behavior 104, 613–620, doi:10.1016/j.physbeh.2011.04.038 (2011).

Lloyd-Williams, F., O’Flaherty, M., Mwatsama, M., Birt, C., Ireland, R., Capewell, S. Estimating the cardiovascular mortality burden attributable to the European Common Agricultural Policy on dietary saturated fats. Bulletin of the World Health Organization 86, 535–541 (2008).

Ludwig, D.S. et al. High glycemic index foods, overeating, and obesity. Pediatrics 103, E26 (1999).

Moghaddam, E., Vogt, J.A. & Wolever, T.M. The effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake. The Journal of Nutrition 136, 2506–2511 (2006).

Naville, D. et al. Link between intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PLOS ONE 7, e30686, doi:10.1371/journal.pone.0030686 (2012).

Rodriguez de Fonseca, F. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212, doi:10.1038/35102582 (2001).

Ryan, A.T. et al. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. The American Journal of Clinical Nutrition 96, 474–482, doi:10.3945/ajcn.112.038133 (2012).

Schwartz, G.J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metabolism 8, 281–288, doi:10.1016/j.cmet.2008.08.005 (2008).

Seimon, R.V. et al. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 296, R912–920, doi:10.1152/ajpregu.90934.2008 (2009).

Siri-Tarino, P.W., Sun, Q., Hu, F.B. & Krauss, R.M. Meta-ana­lysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. The American Journal of Clinical Nutrition 91, 535–546, doi:10.3945/ajcn.2009.27725 (2010).

Skeaff, C.M. & Miller, J. Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Annals of Nutrition & Metabolism 55, 173–201, doi:10.1159/000229002 (2009).

United States Department of Agriculture. (red. United States Department of Agriculture) (2001–2002).

Yang, Q. et al. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Internal Medicine, doi:10.1001/jamainternmed.2013.13563 (2014).

17. Ge din bebis ett smakäventyr

Coulthard, H., Harris, G. & Emmett, P. Delayed introduction of lumpy foods to children during the complementary feeding period affects child’s food acceptance and feeding at 7 years of age. Maternal & Child Nutrition 5, 75–85, doi:10.1111/j.1740-8709.2008.00153.x (2009).

Gerrish, C.J. & Mennella, J.A. Flavor variety enhances food acceptance in formula-fed infants. The American Journal of Clinical Nutrition 73, 1080–1085 (2001).

Hetherington, M.M., Cecil, J.E., Jackson, D.M. & Schwartz, C. Feeding infants and young children. From guidelines to practice. Appetite 57, 791–795, doi:10.1016/j.appet.2011.07.005 (2011).

Lipchock, S.V., Reed, D.R. & Mennella, J.A. The gustatory and olfactory systems during infancy: implications for development of feeding behaviors in the high-risk neonate. Clinics in Perinatology 38, 627–641, doi:10.1016/j.clp.2011.08.008 (2011).

Maier, A., Chabanet, C., Schaalc, B., Issanchoub, S., Leath­wooda, P. Effects of repeated exposure on acceptance of initially disliked vegetables in 7-month old infants. Food Quality and Preference 18, 1023–1032 (2007).

Maier, A., Chabanet, C., Schaal, B., Leathwood, P. & Issanchou, S. Food-related sensory experience from birth through weaning: contrasted patterns in two nearby European regions. Appetite 49, 429–440, doi:10.1016/j.appet.2007.02.007 (2007).

Schwartz, C., Chabanet, C., Lange, C., Issanchou, S. & Nicklaus, S. The role of taste in food acceptance at the beginning of complementary feeding. Physiology & Behavior 104, 646–652, doi:10.1016/j.physbeh.2011.04.061 (2011).

Schwartz, C., Issanchou, S. & Nicklaus, S. Developmental changes in the acceptance of the five basic tastes in the first year of life. The British Journal of Nutrition 102, 1375–1385, doi:10.1017/S0007114509990286 (2009).

Schwartz, C., Scholtens, P.A., Lalanne, A., Weenen, H. & Nicklaus, S. Development of healthy eating habits early in life. Review of recent evidence and selected guidelines. Appetite 57, 796–807, doi:10.1016/j.appet.2011.05.316 (2011).

  1. Brosket blir brunt som colaläsk

Araki, N., Ueno, N., Chakrabarti, B., Morino, Y. & Horiuchi, S. Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. The Journal of Biological Chemistry 267, 10211–10214 (1992).

Danby, F.W. Nutrition and aging skin: sugar and glycation. Clinics in Dermatology 28, 409–411, doi:10.1016/j.clindermatol.2010.03.018 (2010).

DeGroot, J. et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society 9, 720–726, doi:10.1053/joca.2001.0469 (2001).

Farris, P.K. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds. Seminars in Cutaneous Medicine and Surgery 30, 163–166, doi:10.1016/j.sder.2011.05.004 (2011).

Franke, S. et al. Increased levels of advanced glycation end products in human cataractous lenses. Journal of Cataract & Refractive Surgery 29, 998–1004 (2003).

Gul, A., Rahman, M.A., Salim, A. & Simjee, S.U. Advanced glycation end products in senile diabetic and nondiabetic patients with cataract. Journal of Diabetes and its Complications 23, 343–348, doi:10.1016/j.jdiacomp.2008.04.001 (2009).

McNulty, M., Mahmud, A. & Feely, J. Advanced glycation end-products and arterial stiffness in hypertension. American Journal of Hypertension 20, 242–247, doi:10.1016/j.amjhyper.2006.08.009 (2007).

Monnier, V.M., Kohn, R.R. & Cerami, A. Accelerated age-related browning of human collagen in diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America 81, 583–587 (1984).

Pollreisz, A. & Schmidt-Erfurth, U. Diabetic cataract-pathoge­nesis, epidemiology and treatment. Journal of Ophthalmology 2010, 608751, doi:10.1155/2010/608751 (2010).

Rosenberg, H., Modrak, J.B., Hassing, J.M., Al-Turk, W.A. & Stohs, S.J. Glycosylated collagen. Biochemical and Biophysical Research Communications 91, 498–501 (1979).

Schnider, S.L. & Kohn, R.R. Effects of age and diabetes mellitus on the solubility and nonenzymatic glucosylation of human skin collagen. The Journal of Clinical Investigation 67, 1630–1635 (1981).

Schnider, S.L. & Kohn, R.R. Glucosylation of human collagen in aging and diabetes mellitus. The Journal of Clinical Investigation 66, 1179–1181, doi:10.1172/JCI109950 (1980).

Verzijl, N. et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. The Biochemical Journal 350 Pt 2, 381–387 (2000).

Verzijl, N. et al. Effect of collagen turnover on the accumulation of advanced glycation end products. The Journal of Biological Chemistry 275, 39027–39031, doi:10.1074/jbc.M006700200 (2000).

20. Civilisationens sjukdomar – arvet till våra barn?

Basu, S., Yoffe, P., Hills, N. & Lustig, R.H. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLOS ONE 8, e57873, doi:10.1371/journal.pone.0057873 (2013).

Boysen, T. et al. The Inuit cancer pattern – the influence of migration. International Journal of Cancer. Journal international du cancer 122, 2568–2572, doi:10.1002/ijc.23367 (2008).

Burkitt, D.P. Related disease – related cause? The Lancet 2, 1229–1231 (1969).

Burkitt, D.P. Some diseases characteristic of modern Western civilization. British Medical Journal 1, 274–278 (1973).

Burkitt, D.P., Walker, A.R. & Painter, N.S. Dietary fiber and disease. JAMA: the Journal of the American Medical Association 229, 1068–1074 (1974).

Campbell, G.D. Diabetes in Asians and Africans in and around Durban. South African Medical Journal = Suid-Afrikaanse tydskrif vir geneeskunde 37, 1195–1208 (1963).

Campbell, G.D. & McKechnie J. Recent observations on Zulu and Natal Indian diabetics in Durban. South African Medical Journal = Suid-Afrikaanse tydskrif vir geneeskunde 35, 1008–1011 (1961).

Cancer among the american indians. Journal of the American Medical Association LVI, 44–44, doi:10.1001/jama.1911.02560010046018 (1911).

Cancer in British Colonies. British Medical Journal 1, 362–363 (1905).

Cleave, T.L. The neglect of natural principles in current medical practice. Journal of the Royal Naval Medical Service 42, 54–83 (1956).

Cleave, T.L. The Saccharine Disease: Conditions Caused by the Taking of Refined Carbohydrates, such as Sugar and White Flour. (J. Wright, 1974.)

Cohen, A.M., Bavly, S. & Poznanski, R. Change of diet of Yemenite Jews in relation to diabetes and ischaemic heart-disease. The Lancet 2, 1399–1401 (1961).

Cohen, A.M., Fidel, J., Cohen, B., Furst, A. & Eisenberg, S. Diabetes, blood lipids, lipoproteins, and change of environment: restudy of the »new immigrant Yemenites« in Israel. Metabolism: Clinical and Experimental 28, 716–728 (1979).

Fouché, F.P. Freedom of negro races from cancer. BMJ 1, 1116–1116, doi:10.1136/bmj.1.3261.1116-a (1923).

Gere, I. & Dixon, P.M. Post mortem survey of peripheral dental caries in 510 Swedish horses. Equine Veterinary Journal 42, 310–315, doi:10.1111/j.2042-3306.2009.00024.x (2010).

Imperial Cancer Research Fund. Scientific Reports on the Investigations of the Cancer Research Fund. (Taylor and Francis, London, 1908.)

Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1, 4592–4598, doi:10.1073/pnas.1011383107 (2011).

Larsen, T.M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. The New England Journal of Medicine 363, 2102–2113, doi:10.1056/NEJMoa1007137 (2010).

Lee, J.E. et al. Meat intake and cause-specific mortality: a pooled analysis of Asian prospective cohort studies. The American Journal of Clinical Nutrition 98, 1032–1041, doi:10.3945/ajcn.113.062638 (2013).

Lindeberg, S. Apparent Absence of Cerebrocardiovascular Disease in Melanesians: Risk Factors and Nutritional Considerations – the Kitava Study, Lunds University (1994).

Mann, G.V., Shaffer, R.D., Anderson, R.S. & Sandstead, H.H. Cardiovascular Disease in the Masai. Journal of Atherosclerosis Research 4, 289–312 (1964).

McCarrison, R. Faulty food in relation to gastro-intestinal disorder. Journal of the American Medical Association 78, 1–8 (1922).

McCarrison, R. & Lee Foundation for Nutritional Research. Studies in deficiency disease. (H. Frowde and Hoddler & Stoughton, 1945.)

Ostbye, T., Welby, T.J., Prior, I.A., Salmond, C.E. & Stokes, Y.M. Type 2 (non-insulin-dependent) diabetes mellitus, migration and westernisation: the Tokelau Island Migrant Study. Diabetologia 32, 585–590 (1989).

Pan, A. et al. Red meat consumption and mortality: results from 2 prospective cohort studies. Archives of Internal Medicine 172, 555–563, doi:10.1001/archinternmed.2011.2287 (2012).

Prior, I.A., Davidson, F., Salmond, C.E. & Czochanska, Z. Cholesterol, coconuts, and diet on Polynesian atolls: a natural experiment: the Pukapuka and Tokelau island studies. The American Journal of Clinical Nutrition 34, 1552–1561 (1981).

Prior, I.A., Welby, T.J., Ostbye, T., Salmond, C.E. & Stokes, Y.M. Migration and gout: the Tokelau Island migrant study. British Medical Journal (Clin Res Ed) 295, 457–461 (1987).

Rabinowitch, I.M. Clinical and Other Observations on Canadian Eskimos in the Eastern Arctic. Canadian Medical Association Journal 34, 487–501 (1936).

Regber, S. Barriers and Facilitators of Health Promotion and Obesity Prevention in Early Childhood: A Focus on Parents Results from the IDEFICS Study, University of Gothenburg, Sahlgrenska Academy (2014).

Renner, W. The spread of cancer among the descendants of the liberated africans or creoles of Sierra Leone. BMJ 2, 587–589, doi:10.1136/bmj.2.2592.587 (1910).

Ross, A.B., Johansson, A., Ingman, M. & Gyllensten, U. Lifestyle, genetics, and disease in Sami. Croatian Medical Journal 47, 553–565 (2006).

Sinclair, H.M. The Diet of Canadian Indians and Eskimos. Proceedings of the Nutrition Society 12, 69–82, doi:10.1079/PNS19530016 (1953).

Taubes, G. Good Calories, Bad Calories: Fats, Carbs, and the Controversial Science of Diet and Health. Ancor Books (2008).

Urquhart, J.A. The Most Northerly Practice in Canada. Canadian Medical Association Journal 33, 193–196 (1935).

Walker, A.R. The assessment and remedying of inadequate diets in India, as appreciated by Sir Robert McCarrison. Nutrition 18, 106–109 (2002).

Wang, Y.-c., Wei, L.-j., Liu, J.-t., Li, S.-x. & Wang, Q.-s. Comparison of Cancer Incidence between China and the USA. Cancer Biology & Medicine 9, 128–132 (2012).

Weeratunga, P., Jayasinghe, S., Perera, Y., Jayasena, G. & Jayasinghe, S. Per capita sugar consumption and prevalence of diabetes mellitus – global and regional associations. BMC Public Health 14, 186, doi:10.1186/1471-2458-14-186 (2014).

Yang, Q. et al. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Internal Medicine , doi:10.1001/jamainternmed.2013.13563 (2014).

Yu, H., Harris, R.E., Gao, Y.T., Gao, R. & Wynder, E.L. Comparative epidemiology of cancers of the colon, rectum, prostate and breast in Shanghai, China versus the United States. International Journal of Epidemiology 20, 76–81 (1991).